MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 4

Next we will define the Mitchell forcing, M. Recall that the Cohen forcing to add κ many reals, $Add(\omega, \kappa)$, consists of partial finite functions from $\kappa \times \omega \to \{0, 1\}$. For $\alpha < \kappa$ and $p \in Add(\omega, \kappa)$, $p \upharpoonright \alpha$ will denote $p \upharpoonright \alpha \times \omega$; this is a condition in $Add(\omega, \alpha)$. Also, $Add(\omega_1, 1)$ is the Cohen poset to add one subset of ω_1 , i.e. conditions are countable partial functions from $\omega_1 \to \{0, 1\}$. We use the following notation:

• $\mathbb{P} := Add(\omega, \kappa),$

• for $\alpha < \kappa$, $\mathbb{P}_{\alpha} := Add(\omega, \alpha) := \mathbb{P} \upharpoonright \alpha$.

Conditions in the Mitchell forcing \mathbb{M} are pairs of the form (p, q), such that (1) $p \in \mathbb{P}$,

- (2) $\operatorname{dom}(q)$ is a countable subset of κ .
- (3) for all $\alpha \in \operatorname{dom}(q)$, $1_{\mathbb{P}_{\alpha}} \Vdash q(\alpha) \in Add(\omega_1, 1)$.

Lemma 1. \mathbb{M} projects to \mathbb{P} .

Proof. Let $\pi : \mathbb{M} \to \mathbb{P}$ be $\pi(p,q) = p$. This is a projection.

Lemma 2. \mathbb{M} has the κ -c.c., and so preserves cardinals greater than or equal to κ .

Proof. Suppose that $\{(p_{\eta}, q_{\eta}) \mid \eta < \kappa\}$ are conditions in \mathbb{M} . By the Δ -system lemma, applied to the domains of each p_{η} and q_{η} , there is an unbounded $I \subset \kappa$, a finite $d \subset \kappa \times \omega$, and countable $b \subset \kappa$, such that for every $\eta, \delta \in I$, dom $(p_{\eta}) \cap \text{dom}(p_{\delta}) = d$ and dom $(q_{\eta}) \cap \text{dom}(q_{\delta}) = b$.

There are only finitely many possibilities for $p_{\eta} \upharpoonright d$, so by taking another unbounded $J \subset I$, we may assume that for all $\eta, \delta \in J$, $p_{\eta} \cup p_{\delta}$ is a well defined function. Also, for every $\eta \in J$ and $\gamma \in b$, $q_{\eta}(\gamma)$ is a \mathbb{P}_{γ} name for an element in $Add(\omega_1, 1)$. Since $|P_{\gamma}| < \kappa$, there are less than κ many possibilities for the value of $q_{\eta}(\gamma)$. So, there are $\eta < \delta$, both in J, such that (p_{η}, q_{η}) and (p_{δ}, q_{δ}) are compatible.

Lemma 3. \mathbb{M} projects to $Add(\omega, \alpha) * Add(\omega_1, 1)$

Proof. Let $\pi : \mathbb{M} \to Add(\omega, \alpha) * Add(\omega_1, 1)$ be $\pi(p, q) = (p \upharpoonright \alpha, q(\alpha))$. We claim that this is a projection. If $(p', q') \leq_{\mathbb{M}} (p, q)$, then $p' \upharpoonright \alpha \leq_{\mathbb{P}_{\alpha}} p \upharpoonright \alpha$, and if $\alpha \in \operatorname{dom}(q) \subset \operatorname{dom}(q')$, then $p' \upharpoonright \alpha \Vdash q'(\alpha) \leq q(\alpha)$. (If $\alpha \notin \operatorname{dom}(q)$, then $q'(\alpha) = q(\alpha) = \emptyset = 1_{Add(\omega_1, 1)}$). So, π is order preserving.

For the second requirement of being a projection, suppose that $(r, s) \leq \pi(p,q) = (p \upharpoonright \alpha, q(\alpha))$. Let $p' = p \cup r$. Since $r \leq p \upharpoonright \alpha, p'$ is a well defined function, and so $p' \in \mathbb{P}$. Let q' be such that $\operatorname{dom}(q) = \operatorname{dom}(q')$;

 $q'(\alpha) = s$ and for $\beta \in \text{dom}(q) \setminus \{\alpha\}, q'(\beta) = q(\beta)$. Then $(p', q') \leq_{\mathbb{M}} (p, q)$ and $\pi(p', q') = (r, s)$.

Lemma 4. $Add(\omega, \alpha) * Add(\omega_1, 1)$ collapses α to ω_1 .

Proof. Let G be $Add(\omega, \alpha)$ -generic. In V[G], let $\langle r_i \mid i < \alpha \rangle$ be distinct elements of 2^{ω} . Let H be $Add(\omega_1, 1)$ -generic over V[G]. In V[G][H] define $h : \alpha \to \omega_1$, by setting h(i) to be the least limit $\beta < \omega_1$ such that there is $p \in H$ with:

- $\beta + n \in \text{dom}(p)$ for all n, and
- for every $n < \omega$, $p(\beta + n) = r_i(n)$.

Then h is a one-to-one function from α to ω_1 .

Corollary 5. \mathbb{M} collapses every uncountable $\alpha < \kappa$ to ω_1 .

Definition 6. $\mathbb{Q} := \{q \mid \operatorname{dom}(q) \subset \kappa, |\operatorname{dom}(q)| < \omega_1, (\forall \alpha \in \operatorname{dom}(q))1_{\mathbb{P}_{\alpha}} \Vdash q(\alpha) \in Add(\omega_1, 1)\}$ (i.e. the second coordinates of conditions in \mathbb{M}). For $q_1, q_2 \in \mathbb{Q}$, we set $q_2 \leq_{\mathbb{Q}} q_1$ iff:

- $\operatorname{dom}(q_2) \supset \operatorname{dom}(q_1)$,
- for all $\alpha \in \operatorname{dom}(q_1)$, $1_{\mathbb{P}_{\alpha}} \Vdash q_2(\alpha) \le q_1(\alpha)$.

Next we consider the product $\mathbb{P} \times \mathbb{Q}$. This has the same underlying set as \mathbb{M} , but the ordering is different. For example note that $(p',q') \leq_{\mathbb{P} \times \mathbb{Q}} (p,q)$ implies that $(p',q') \leq_{\mathbb{M}} (p,q)$, but the converse fails. Actually, $(p',q') \leq_{\mathbb{P} \times \mathbb{Q}} (p,q)$ iff $p' \leq_{\mathbb{P}} p$ and $(1,q') \leq_{\mathbb{M}} (1,q)$

Lemma 7. $\mathbb{P}\times\mathbb{Q}$ projects to \mathbb{M} .

Proof. Let $\pi : \mathbb{P} \times \mathbb{Q} \to \mathbb{M}$ be the identity, i.e. $\pi(p,q) = (p,q)$. We will show that this is a projection. Suppose that $(p',q') \leq_{\mathbb{P} \times \mathbb{Q}} (p,q)$. That means that $p' \leq_{\mathbb{P}} p$ and $q' \leq_{\mathbb{Q}} q$. The latter implies that $\operatorname{dom}(q') \supset \operatorname{dom}(q)$ and for every $\alpha \in \operatorname{dom}(q)$, $1_{\mathbb{P}_{\alpha}} \Vdash q'(\alpha) \leq_{A\dot{d}d(\omega_1,1)} q(\alpha)$. Therefore, $p' \upharpoonright \alpha \Vdash$ $q'(\alpha) \leq_{A\dot{d}d(\omega_1,1)} q(\alpha)$, and so $(p',q') \leq_{\mathbb{M}} (p,q)$. So π is order preserving.

To show the second requirement of being a projection, suppose that $(p',q') \leq_{\mathbb{M}} (p,q) = \pi(p,q)$. That means that $p' \leq_{\mathbb{P}} p$; dom $(q) \subset$ dom(q') and for every $\alpha \in$ dom $(q), p' \upharpoonright \alpha \Vdash q'(\alpha) \leq q(\alpha)$. We have to define a condition $(r,s) \in \mathbb{P} \times \mathbb{Q}$, such that:

- $(r,s) \leq_{\mathbb{P} \times \mathbb{Q}} (p,q)$, and
- $\pi(r,s) = (r,s) \leq_{\mathbb{M}} (p',q').$

Set r = p'. Let $s \in \mathbb{Q}$ be such that $\operatorname{dom}(s) = \operatorname{dom}(q')$. For every $\alpha \in \operatorname{dom}(q)$, we define $s(\alpha)$ to be a \mathbb{P}_{α} -name for $Add(\omega_1, 1)$, such that $p' \upharpoonright \alpha \Vdash s(\alpha) = q'(\alpha)$ and if $t \in \mathbb{P}_{\alpha}$ is incompatible with $p' \upharpoonright \alpha$, then $t \Vdash_{\mathbb{P}_{\alpha}} s(\alpha) = q(\alpha)$. We can always cook up such a name ¹. Then we have:

- (1) $1_{\mathbb{P}_{\alpha}} \Vdash s(\alpha) \le q(\alpha)$
- (2) $p' \upharpoonright \alpha \Vdash s(\alpha) \le q'(\alpha)$.

```
<sup>1</sup>Formally, s(\alpha) = \{ \langle \sigma, t \rangle \mid (t \le p' \upharpoonright \alpha, t \Vdash \sigma \in q'(\alpha)) \text{ or } t \perp p' \upharpoonright \alpha, t \Vdash \sigma \in q(\alpha) \}.
```

 $\mathbf{2}$

The first item guarantees that $(p', s) \leq_{\mathbb{P} \times \mathbb{Q}} (p, q)$, and the second item gives that $(p', s) \leq_{\mathbb{M}} (p', q')$. That concludes the proof that π is a projection.

3

Lemma 8. \mathbb{Q} is ω_1 -closed.

Proof. Suppose that $\langle q_n \mid n < \omega \rangle$ is a decreasing sequence of conditions in \mathbb{Q} . Define a lower bound q as follows. Set $\operatorname{dom}(q) = \bigcup_n \operatorname{dom}(q_n)$. This is still countable. For every $\alpha \in \operatorname{dom}(q)$, let n_α be such that $\alpha \in \operatorname{dom}(q_{n_\alpha})$. Since the sequence is decreasing, $\alpha \in \operatorname{dom}(q_n)$ for all $n \geq n_\alpha$ and:

1_{P_α} ⊢ "⟨q_n(α)|n_α ≤ n < ω⟩ is a decreasing sequence in Add(ω₁, 1)";
1_{P_α} ⊢ "Add(ω₁, 1) is ω₁-closed.

It follows that $1_{\mathbb{P}_{\alpha}} \Vdash "(\exists x \in Add(\omega_1, 1))(\forall n \ge n_{\alpha})(x \le q_n(\alpha))$. Then there is a \mathbb{P}_{α} -name, s, such that $1_{\mathbb{P}_{\alpha}} \Vdash "s \le_{Add(\omega_1, 1)} q_n(\alpha)$ " for all $n \ge n_{\alpha}^2$. Set $q(\alpha) = s$.

Easton lemma: Suppose that \mathbb{P} is τ -c.c. and \mathbb{Q} is τ -closed. Then $1_{\mathbb{P}} \Vdash \mathbb{Q}$ does not add any new sequences of length less than τ .

Lemma 9. \mathbb{M} preserves ω_1

Proof. Let $G_{\mathbb{M}}$ is \mathbb{M} -generic and $G_{\mathbb{P}} \times G_{\mathbb{Q}}$ be $\mathbb{P} \times \mathbb{Q}$ -generic, such that $V[G_{\mathbb{M}}] \subset V[G_{\mathbb{P}}][G_{\mathbb{Q}}]$. Since \mathbb{P} has the countable chain condition, ω_1 is still a cardinal in $V[G_{\mathbb{P}}]$. By Easton's lemma, every countable sequence from $V[G_{\mathbb{P}}][G_{\mathbb{Q}}]$ is actually in $V[G_{\mathbb{P}}]$. So ω_1 remains a cardinal in $V[G_{\mathbb{P}}][G_{\mathbb{Q}}]$. (Otherwise there would have been a new countable sequence $\omega \to \omega_1$). Since $V[G_{\mathbb{M}}] \subset V[G_{\mathbb{P}}][G_{\mathbb{Q}}], \omega_1$ is a cardinal in $V[G_{\mathbb{M}}]$. \Box

Theorem 10. If $G_{\mathbb{M}}$ is \mathbb{M} -generic, then $V[G_{\mathbb{M}}] \models \kappa = 2^{\omega} = \omega_2$.

Proof. We already showed that ω_1 and κ remain cardinals, while everything in between is collapsed. It follows that $V[G_{\mathbb{M}}] \models \kappa = \omega_2$. Also since the forcing projects to $Add(\omega, \kappa)$, $V[G_{\mathbb{M}}] \models \kappa = 2^{\omega}$.

²This is due to the fact that if $p \Vdash (\exists x)\phi(x)$, then there is a name *a*, such that $p \Vdash \phi(a)$. The proof is a good exercise on forcing.