MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 4

Next we will define the Mitchell forcing, \mathbb{M}. Recall that the Cohen forcing to add κ many reals, $\operatorname{Add}(\omega, \kappa)$, consists of partial finite functions from $\kappa \times \omega \rightarrow\{0,1\}$. For $\alpha<\kappa$ and $p \in \operatorname{Add}(\omega, \kappa), p \upharpoonright \alpha$ will denote $p \upharpoonright \alpha \times \omega$; this is a condition in $\operatorname{Add}(\omega, \alpha)$. Also, $\operatorname{Add}\left(\omega_{1}, 1\right)$ is the Cohen poset to add one subset of ω_{1}, i.e. conditions are countable partial functions from $\omega_{1} \rightarrow\{0,1\}$. We use the following notation:

- $\mathbb{P}:=\operatorname{Add}(\omega, \kappa)$,
- for $\alpha<\kappa, \mathbb{P}_{\alpha}:=\operatorname{Add}(\omega, \alpha):=\mathbb{P} \upharpoonright \alpha$.

Conditions in the Mitchell forcing \mathbb{M} are pairs of the form (p, q), such that
(1) $p \in \mathbb{P}$,
(2) $\operatorname{dom}(q)$ is a countable subset of κ.
(3) for all $\alpha \in \operatorname{dom}(q), 1_{\mathbb{P}_{\alpha}} \Vdash q(\alpha) \in \operatorname{Add}\left(\omega_{1}, 1\right)$.

Lemma 1. \mathbb{M} projects to \mathbb{P}.
Proof. Let $\pi: \mathbb{M} \rightarrow \mathbb{P}$ be $\pi(p, q)=p$. This is a projection.
Lemma 2. \mathbb{M} has the κ-c.c., and so preserves cardinals greater than or equal to κ.

Proof. Suppose that $\left\{\left(p_{\eta}, q_{\eta}\right) \mid \eta<\kappa\right\}$ are conditions in \mathbb{M}. By the Δ-system lemma, applied to the domains of each p_{η} and q_{η}, there is an unbounded $I \subset \kappa$, a finite $d \subset \kappa \times \omega$, and countable $b \subset \kappa$, such that for every $\eta, \delta \in I$, $\operatorname{dom}\left(p_{\eta}\right) \cap \operatorname{dom}\left(p_{\delta}\right)=d$ and $\operatorname{dom}\left(q_{\eta}\right) \cap \operatorname{dom}\left(q_{\delta}\right)=b$.

There are only finitely many possibilities for $p_{\eta} \upharpoonright d$, so by taking another unbounded $J \subset I$, we may assume that for all $\eta, \delta \in J, p_{\eta} \cup p_{\delta}$ is a well defined function. Also, for every $\eta \in J$ and $\gamma \in b, q_{\eta}(\gamma)$ is a \mathbb{P}_{γ} name for an element in $\operatorname{Add}\left(\omega_{1}, 1\right)$. Since $\left|P_{\gamma}\right|<\kappa$, there are less than κ many possibilities for the value of $q_{\eta}(\gamma)$. So, there are $\eta<\delta$, both in J, such that $\left(p_{\eta}, q_{\eta}\right)$ and $\left(p_{\delta}, q_{\delta}\right)$ are compatible.

Lemma 3. \mathbb{M} projects to $\operatorname{Add}(\omega, \alpha) * \dot{\operatorname{Ad} d}\left(\omega_{1}, 1\right)$
Proof. Let $\pi: \mathbb{M} \rightarrow \operatorname{Add}(\omega, \alpha) * \dot{A d d}\left(\omega_{1}, 1\right)$ be $\pi(p, q)=(p \upharpoonright \alpha, q(\alpha))$. We claim that this is a projection. If $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{M}}(p, q)$, then $p^{\prime} \upharpoonright \alpha \leq_{\mathbb{P}_{\alpha}} p \upharpoonright \alpha$, and if $\alpha \in \operatorname{dom}(q) \subset \operatorname{dom}\left(q^{\prime}\right)$, then $p^{\prime} \upharpoonright \alpha \Vdash q^{\prime}(\alpha) \leq q(\alpha)$. (If $\alpha \notin \operatorname{dom}(q)$, then $\left.q^{\prime}(\alpha)=q(\alpha)=\emptyset=1_{\operatorname{Add}\left(\omega_{1}, 1\right)}\right)$. So, π is order preserving.

For the second requirement of being a projection, suppose that $(r, s) \leq$ $\pi(p, q)=(p \upharpoonright \alpha, q(\alpha))$. Let $p^{\prime}=p \cup r$. Since $r \leq p \upharpoonright \alpha, p^{\prime}$ is a well defined function, and so $p^{\prime} \in \mathbb{P}$. Let q^{\prime} be such that $\operatorname{dom}(q)=\operatorname{dom}\left(q^{\prime}\right)$;
$q^{\prime}(\alpha)=s$ and for $\beta \in \operatorname{dom}(q) \backslash\{\alpha\}, q^{\prime}(\beta)=q(\beta)$. Then $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{M}}(p, q)$ and $\pi\left(p^{\prime}, q^{\prime}\right)=(r, s)$.
Lemma 4. $\operatorname{Add}(\omega, \alpha) * \dot{\operatorname{Ad}} d\left(\omega_{1}, 1\right)$ collapses α to ω_{1}.
Proof. Let G be $\operatorname{Add}(\omega, \alpha)$-generic. In $V[G]$, let $\left\langle r_{i} \mid i<\alpha\right\rangle$ be distinct elements of 2^{ω}. Let H be $\operatorname{Add}\left(\omega_{1}, 1\right)$-generic over $V[G]$. In $V[G][H]$ define $h: \alpha \rightarrow \omega_{1}$, by setting $h(i)$ to be the least limit $\beta<\omega_{1}$ such that there is $p \in H$ with:

- $\beta+n \in \operatorname{dom}(p)$ for all n, and
- for every $n<\omega, p(\beta+n)=r_{i}(n)$.

Then h is a one-to-one function from α to ω_{1}.

Corollary 5. \mathbb{M} collapses every uncountable $\alpha<\kappa$ to ω_{1}.
Definition 6. $\mathbb{Q}:=\left\{q\left|\operatorname{dom}(q) \subset \kappa,|\operatorname{dom}(q)|<\omega_{1},(\forall \alpha \in \operatorname{dom}(q)) 1_{\mathbb{P}_{\alpha}} \Vdash\right.\right.$ $\left.q(\alpha) \in \dot{\operatorname{Ad} d}\left(\omega_{1}, 1\right)\right\}$ (i.e. the second coordinates of conditions in \mathbb{M}). For $q_{1}, q_{2} \in \mathbb{Q}$, we set $q_{2} \leq_{\mathbb{Q}} q_{1}$ iff:

- $\operatorname{dom}\left(q_{2}\right) \supset \operatorname{dom}\left(q_{1}\right)$,
- for all $\alpha \in \operatorname{dom}\left(q_{1}\right), 1_{\mathbb{P}_{\alpha}} \Vdash q_{2}(\alpha) \leq q_{1}(\alpha)$.

Next we consider the product $\mathbb{P} \times \mathbb{Q}$. This has the same underlying set as \mathbb{M}, but the ordering is different. For example note that $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{P} \times \mathbb{Q}}(p, q)$ implies that $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{M}}(p, q)$, but the converse fails. Actually, $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{P} \times \mathbb{Q}}$ (p, q) iff $p^{\prime} \leq_{\mathbb{P}} p$ and $\left(1, q^{\prime}\right) \leq_{\mathbb{M}}(1, q)$
Lemma 7. $\mathbb{P} \times \mathbb{Q}$ projects to \mathbb{M}.
Proof. Let $\pi: \mathbb{P} \times \mathbb{Q} \rightarrow \mathbb{M}$ be the identity, i.e. $\pi(p, q)=(p, q)$. We will show that this is a projection. Suppose that $\left(p^{\prime}, q^{\prime}\right) \leq \mathbb{P} \times \mathbb{Q}(p, q)$. That means that $p^{\prime} \leq_{\mathbb{P}} p$ and $q^{\prime} \leq_{\mathbb{Q}} q$. The latter implies that $\operatorname{dom}\left(q^{\prime}\right) \supset \operatorname{dom}(q)$ and for every $\alpha \in \operatorname{dom}(q), 1_{\mathbb{P}_{\alpha}} \Vdash q^{\prime}(\alpha) \leq_{\operatorname{Add}\left(\omega_{1}, 1\right)} q(\alpha)$. Therefore, $p^{\prime} \upharpoonright \alpha \Vdash$ $q^{\prime}(\alpha) \leq_{A \dot{d} d\left(\omega_{1}, 1\right)} q(\alpha)$, and so $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{M}}(p, q)$. So π is order preserving.

To show the second requirement of being a projection, suppose that $\left(p^{\prime}, q^{\prime}\right) \leq_{\mathbb{M}}(p, q)=\pi(p, q)$. That means that $p^{\prime} \leq_{\mathbb{P}} p ; \operatorname{dom}(q) \subset \operatorname{dom}\left(q^{\prime}\right)$ and for every $\alpha \in \operatorname{dom}(q), p^{\prime} \upharpoonright \alpha \Vdash q^{\prime}(\alpha) \leq q(\alpha)$. We have to define a condition $(r, s) \in \mathbb{P} \times \mathbb{Q}$, such that:

- $(r, s) \leq_{\mathbb{P} \times \mathbb{Q}}(p, q)$, and
- $\pi(r, s)=(r, s) \leq_{\mathbb{M}}\left(p^{\prime}, q^{\prime}\right)$.

Set $r=p^{\prime}$. Let $s \in \mathbb{Q}$ be such that $\operatorname{dom}(s)=\operatorname{dom}\left(q^{\prime}\right)$. For every $\alpha \in \operatorname{dom}(q)$, we define $s(\alpha)$ to be a \mathbb{P}_{α}-name for $\operatorname{Add}\left(\omega_{1}, 1\right)$, such that $p^{\prime} \upharpoonright \alpha \Vdash s(\alpha)=q^{\prime}(\alpha)$ and if $t \in \mathbb{P}_{\alpha}$ is incompatible with $p^{\prime} \upharpoonright \alpha$, then $t \Vdash_{\mathbb{P}_{\alpha}} s(\alpha)=q(\alpha)$. We can always cook up such a name ${ }^{1}$. Then we have:
(1) $1_{\mathbb{P}_{\alpha}} \Vdash s(\alpha) \leq q(\alpha)$
(2) $p^{\prime} \upharpoonright \alpha \Vdash s(\alpha) \leq q^{\prime}(\alpha)$.

[^0]The first item guarantees that $\left(p^{\prime}, s\right) \leq_{\mathbb{P} \times \mathbb{Q}}(p, q)$, and the second item gives that $\left(p^{\prime}, s\right) \leq_{\mathbb{M}}\left(p^{\prime}, q^{\prime}\right)$. That concludes the proof that π is a projection.

Lemma 8. \mathbb{Q} is ω_{1}-closed.
Proof. Suppose that $\left\langle q_{n} \mid n<\omega\right\rangle$ is a decreasing sequence of conditions in \mathbb{Q}. Define a lower bound q as follows. Set $\operatorname{dom}(q)=\cup_{n} \operatorname{dom}\left(q_{n}\right)$. This is still countable. For every $\alpha \in \operatorname{dom}(q)$, let n_{α} be such that $\alpha \in \operatorname{dom}\left(q_{n_{\alpha}}\right)$. Since the sequence is decreasing, $\alpha \in \operatorname{dom}\left(q_{n}\right)$ for all $n \geq n_{\alpha}$ and:

- $1_{\mathbb{P}_{\alpha}} \Vdash$ " $\left\langle q_{n}(\alpha){ }_{\mid} n_{\alpha} \leq n<\omega\right\rangle$ is a decreasing sequence in $\dot{A d d}\left(\omega_{1}, 1\right) " ;$
- $1_{\mathbb{P}_{\alpha}} \Vdash$ " $\dot{\operatorname{d}} d\left(\omega_{1}, 1\right)$ is ω_{1}-closed.

It follows that $1_{\mathbb{P}_{\alpha}} \Vdash "\left(\exists x \in \dot{\operatorname{Ad} d}\left(\omega_{1}, 1\right)\right)\left(\forall n \geq n_{\alpha}\right)\left(x \leq q_{n}(\alpha)\right)$. Then there is a \mathbb{P}_{α}-name, s, such that $1_{\mathbb{P}_{\alpha}} \Vdash " s \leq_{A d d\left(\omega_{1}, 1\right)} q_{n}(\alpha)$ " for all $n \geq n_{\alpha}{ }^{2}$. Set $q(\alpha)=s$.

Easton lemma: Suppose that \mathbb{P} is τ-c.c. and \mathbb{Q} is τ-closed. Then $1_{\mathbb{P}} \Vdash \mathbb{Q}$ does not add any new sequences of length less than τ.

Lemma 9. \mathbb{M} preserves ω_{1}
Proof. Let $G_{\mathbb{M}}$ is \mathbb{M}-generic and $G_{\mathbb{P}} \times G_{\mathbb{Q}}$ be $\mathbb{P} \times \mathbb{Q}$-generic, such that $V\left[G_{\mathbb{M}}\right] \subset V\left[G_{\mathbb{P}}\right]\left[G_{\mathbb{Q}}\right]$. Since \mathbb{P} has the countable chain condition, ω_{1} is still a cardinal in $V\left[G_{\mathbb{P}}\right]$. By Easton's lemma, every countable sequence from $V\left[G_{\mathbb{P}}\right]\left[G_{\mathbb{Q}}\right]$ is actually in $V\left[G_{\mathbb{P}}\right]$. So ω_{1} remains a cardinal in $V\left[G_{\mathbb{P}}\right]\left[G_{\mathbb{Q}}\right]$. (Otherwise there would have been a new countable sequence $\omega \rightarrow \omega_{1}$).

Since $V\left[G_{\mathbb{M}}\right] \subset V\left[G_{\mathbb{P}}\right]\left[G_{\mathbb{Q}}\right], \omega_{1}$ is a cardinal in $V\left[G_{\mathbb{M}}\right]$.
Theorem 10. If $G_{\mathbb{M}}$ is \mathbb{M}-generic, then $V\left[G_{\mathbb{M}}\right] \models \kappa=2^{\omega}=\omega_{2}$.
Proof. We already showed that ω_{1} and κ remain cardinals, while everything in between is collapsed. It follows that $V\left[G_{\mathbb{M}}\right] \vDash \kappa=\omega_{2}$. Also since the forcing projects to $\operatorname{Add}(\omega, \kappa), V\left[G_{\mathbb{M}}\right] \vDash \kappa=2^{\omega}$.

[^1]
[^0]: ${ }^{1}$ Formally, $s(\alpha)=\left\{\langle\sigma, t\rangle \mid\left(t \leq p^{\prime} \upharpoonright \alpha, t \Vdash \sigma \in q^{\prime}(\alpha)\right)\right.$ or $\left.t \perp p^{\prime} \upharpoonright \alpha, t \Vdash \sigma \in q(\alpha)\right\}$.

[^1]: ${ }^{2}$ This is due to the fact that if $p \Vdash(\exists x) \phi(x)$, then there is a name a, such that $p \Vdash \phi(a)$. The proof is a good exercise on forcing.

